miR-150 inhibits terminal erythroid proliferation and differentiation
نویسندگان
چکیده
منابع مشابه
miR-150 inhibits terminal erythroid proliferation and differentiation
MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses...
متن کاملMYSM1/miR-150/FLT3 inhibits B1a cell proliferation
The aberrant expansion of B1a cells has been observed in several murine autoimmune disease models; however, the mechanism of such proliferation of B1a cells is still limited. Here, we identify that Myb Like, SWIRM And MPN Domains 1 (MYSM1), a histone H2A deubiquitinase, plays an intrinsic role in the proliferation of B1a cells where MYSM1 deficiency results in the increased proliferation of B1a...
متن کاملmiR-429 Inhibits Differentiation and Promotes Proliferation in Porcine Preadipocytes
MicroRNAs (miRNAs) are crucial regulatory molecules for adipogenesis. They contribute to the controlling of proliferation and differentiation of preadipocytes. Previous studies revealed an important role of miR-429 in cell invasion, migration, and apoptosis. Our previous work has shown that the expression of miR-429 in subcutaneous fat can be observed in newly born (3-day-old) Rongchang piglets...
متن کاملmiR-150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma
Cancer cells are characterized by a pathological manifestation of uncontrolled proliferation, which results in tumor formation. Therefore, it is necessary to improve understanding of the underlying mechanism of cell cycle control. Here, we report that miR‑150 is downregulated in nasopharyngeal carcinoma tissues and cells. Upregulation of miR‑150 suppresses nasopharyngeal carcinoma (NPC) cell pr...
متن کاملmiR-218 Inhibits Erythroid Differentiation and Alters Iron Metabolism by Targeting ALAS2 in K562 Cells
microRNAs (miRNAs) are involved in a variety of biological processes. The regulatory function and potential role of miRNAs targeting the mRNA of the 5'-aminolevulinate synthase 2 (ALAS2) in erythropoiesis were investigated in order to identify miRNAs which play a role in erythroid iron metabolism and differentiation. Firstly, the role of ALAS2 in erythroid differentiation and iron metabolism in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Oncotarget
سال: 2015
ISSN: 1949-2553
DOI: 10.18632/oncotarget.5824